
Java VAMDC-TAP Node software

Document Information

Editors: M. Doronin
Authors: M. Doronin
Contributors:
Type of document: standards documentation
Status: draft
Distribution: public
Work package: WP6
Version: 12.07
Date: 29/08/2012
Document code:
Document URL: http://www.vamdc.org/documents/software/

JavaNodeSwDoc_12.07.pdf

Abstract: This document is a guide for deployment and use of the Java VAMDC-
TAP Node software implementation.

http://www.vamdc.org/documents/software/JavaNodeSwDoc_12.07.pdf
http://www.vamdc.org/documents/software/JavaNodeSwDoc_12.07.pdf

Version History

Version Date Modified By Description of Change
V0.1 31/10/2011 M.Doronin first draft
V12.07 29/08/2012 M.Doronin Release documentation for 12.07 Java node software

Disclaimer

The information in this document is subject to change without notice. Company or product names mentioned in
this document may be trademarks or registered trademarks of their respective companies.

All rights reserved

The document is proprietary of the VAMDC consortium members. No copying or distributing, in any form or by
any means, is allowed without the prior written agreement of the owner of the property rights.

This document reflects only the authors’ view. The European Community is not liable for any use that may be
made of the information contained herein.

Acknowledgements

VAMDC is funded under the “Combination of Collaborative Projects and Coordination and Support Actions”
Funding Scheme of The Seventh Framework Program. Call topic: INFRA-2008-1.2.2 Scientific Data Infrastruc-
ture. Grant Agreement number: 239108.

CONTENTS

1 Introduction 1
1.1 Used software . 1
1.2 VAMDC common components . 1
1.3 Node-specific components . 2
1.4 Comparison with the python/django node software . 2
1.5 Node implementation . 3

2 Database plugin 4
2.1 Request processing . 4
2.2 DatabasePlugin interface . 5
2.3 RequestInterface interface . 5

3 Database plugin testing 7
3.1 Screenshots . 7
3.2 Maven Integration . 10

4 Database Object Model 12
4.1 Step-by-step guide . 12
4.2 Notable Cayenne features used . 19

5 XSAMS tree building 20
5.1 Example constructor class . 20
5.2 Attaching objects to XSAMS Document tree . 22
5.3 Identifiers generation . 22
5.4 XSAMS JAXB convenience extensions . 23
5.5 Case-By-Case generic builders . 24

6 VSS query recognition and mapping 25
6.1 Query keywords tree . 25
6.2 Tree objects . 25
6.3 Query mapping scenarios . 27
6.4 Query Mapping Library . 27

7 Query metrics support 29
7.1 getMetrics(...) method . 29
7.2 Sample implementation . 30

8 VAMDC-TAP node deployment 31
8.1 Install Java application server . 31
8.2 Deploy node software . 31
8.3 VAMDC-TAP service configuration file . 31
8.4 Cayenne configuration using DBCP . 32
8.5 Database updates and cache . 33
8.6 Node mirroring . 33

ii

Bibliography 35

iii

iv

CHAPTER

ONE

INTRODUCTION

Creation of a separate implementation of the VAMDC-TAP node software in Java pursuied several goals:

• Multiple implementations insure that standards are complete and contain no implementation-specific ele-
ments

• Give end-users a choice of the implementation language

• Architectural design of the XML generator based on the schema rather than on a non-hierarchical keywords
dictionary (as in Python/Django node software - see below the Differencies section)

1.1 Used software

The following open-source libraries were used as Java node software components:

• JAXB RI for XML schema mapping and document output

• Apache Cayenne ORM framework for database access

• MySQL database (any relational database can be used)

• ANTLR generated query parser with slightly modified SQLite syntax

• Oracle Jersey JAX-RS implementation

• Apache Tomcat application server

1.2 VAMDC common components

Following components, developed within the VAMDC project are part of Java VAMDC node software implemen-
tation.

• Dictionaries of standard keywords, used in a query;

• Query parsing library, providing object-oriented view on a query string;

• Query mapping library, providing basic support for queries mapping to node database queries.

• XSAMS helper library, providing convenience methods for output XML generator implementation;

• Web application, .war archive integrating all libraries

• VAMDC-TAP service validation tool, may be used for node software testing

1

Java VAMDC-TAP node software documentation, Release 12.07

1.3 Node-specific components

In Java node software each node installation requires creating two code blocks:

1. Database mapping classes with Apache Cayenne. This task is well described in Cayenne documentation
[CAYDOC] . Fancy graphical tool is provided.

2. Node plugin, responsible for query translation into internal queries and building appropriate XSAMS tree
from the database access objects, fetched using mapped queries.

This document is dedicated mostly to describe how to implement and deploy a node plugin.

For the rough estimation of the required amount of node-specific code, following numbers should be considered:

• BASECOL node plugin - total of ~1600 lines of code;

• KIDA node plugin - total of ~1500 lines of code;

For all nodes those numbers do not include the autogenerated database model size.

1.4 Comparison with the python/django node software

The paragraph provides a comparison between the Java-Implementation and the Python/Django node software

1.4.1 Common features

• Work as a web application behind a web server

• Use object-relational mapping for database access

• Try to minimize the amount of node-specific code

• Node-specific part works as a plugin

1.4.2 Differencies

• The main architectural difference between the the Java implementation and the Python/Django one is the
XML generator.

Java version uses Document Object Model (DOM) mapping of the XML, node plugin needs to build
XSAMS blocks as trees of related objects.

Python version provides a generator with the defined and limited set of loops and an-
chors(“returnables”). Node developer needs to study not only the XSAMS documentation, but also to
look through a huge and not well documented list of returnables keywords to understand where and
how to put his data.

The use of DOM XML mapping has some advantages and disadvantages:

– On a good side, it gives much more flexibility in document generation.

– Additional benefit is that it helps to keep the output document error-free, thanks to compile-time
type checks.

– XML DOM mapping provided is complete: even if node wishes to put the data in a rarely used
element of XSAMS, it can without the need to output XML blocks as the plain text.

– On a bad side, task of building a document tree results in a slightly bigger amount of node-specific
code.

For the task of implementing XSAMS blocks builder, existing builders of KIDA, BASECOL and
VALD are useful as good examples.

1.3. Node-specific components 2

Java VAMDC-TAP node software documentation, Release 12.07

• Java implementation doesn’t (yet) support document streaming, it requires to have a whole document
tree to be built in memory and then streamed in a response.

Thus increasing memory footprint, it allows to not strictly follow the document generation order, i.e.
export some species and states, then export processes, while exporting some more species and states.

Also, this way it is easier to verify the document integrity.

• Java implementation doesn’t provide an import tool from ASCII files into a relational database

Well, there was no need for such a tool. You may use Python one.

• Java implementation provides more sophisticated query parsing and mapping support

1.5 Node implementation

So, implementing a node using the Java Node Software would require the following steps:

• Create database model and classes, as described in the Database Object Model section.

After completing this step you will be able to access your database in a convenient way from any Java
software you develop. For the details, see the Apache Cayenne documentation. [CAYDOC]

• Set up the project for your plugin, understand the query process and interaction of the node and the plugin.
See the Database plugin section.

• Create XSAMS tree blocks constructors and builders, as described in the XSAMS tree building section

Here you might need help from the person responsible for database to figure out what XSAMS elements are
appropriate for your database content.

During this step you will be able to test your node plugin: Database plugin testing. Try to eliminate any
validation errors. The result would be the same for all queries, but it is normal.

• Define the supported restrictables and create mapping classes as described in the VSS query recognition and
mapping section.

When this step will be accomplished, you are more than half way through the implementation process. You
can test different queries and check if you are getting relevant XSAMS documents as the result.

• The last development step would be to implement the query metrics to be fully compliant with the VAMDC-
TAP standard. See the Query metrics support section for the implementation details.

• After the node plugin is working, ask your servers manager to deploy the Java Node software on the appli-
cation server, as it is described in the VAMDC-TAP node deployment section. Test again using the VAMDC-
TAP Validator in the network mode.

1.5. Node implementation 3

CHAPTER

TWO

DATABASE PLUGIN

2.1 Request processing

In the course of normal operation, node software receives HTTP GET and HTTP HEAD requests to the /TAP/sync
endpoint and must respond to them with valid XSAMS documents or only response headers respectively.

The following steps are performed to achieve that, Java VAMDC-TAP implementation (Framework) is responsi-
ble for some of them. Node Plugin is responsible for the others. The Apache Cayenne object-relational mapping
framework is used to access the Database.

• On the query reception, framework asks the plugin for the list of supported keywords.

• Framework is parsing the incoming query, checking it’s validity and converting it into a group of easily
accessible Query objects.

• Framework asks Plugin to construct the document by calling the DatabasePlugin interface buildXSAMS()
method.

• Plugin maps the incoming query to one or more Database queries, as described in the Query mapping
scenarios.

4

Java VAMDC-TAP node software documentation, Release 12.07

• Before executing or mapping the queries, Plugin should check if the user actually requested the certain
branch of XSAMS document to be built. See the RequestInterface interface checkBranch() method for the
details.

• Plugin receives objects from the Database, builds XSAMS blocks from them and gives those blocks to the
Framework. See the XSAMS tree building section for the details.

• When the document tree is built, Plugin returns the control to the Framework.

• Framework does the final checks on the document tree, calculates accurate metrics for the document.

• Framework converts the document tree into XML stream and sends it to the user.

Interaction between the database plugin and the Java node software is performed through two compact interfaces.

2.2 DatabasePlugin interface

Each and every node plugin must implement the org.vamdc.tapservice.api.DatabasePlug interface, defining the
following methods:

• public abstract Collection<Restrictable> getRestrictables();

get restrictables supported by this node. Must return a collection of org.vamdc.dictionary.Restrictable
dictionary elements. This method is called once per each request to the /TAP/sync and /VOSI/capabilities
endpoints.

• public abstract void buildXSAMS (RequestInterface userRequest);

Build XSAMS document tree from the user request. Object implementing RequestInterface interface is
passed as a parameter. No return is expected. This method is called every time the node software is receiving
an HTTP GET request to the /TAP/sync? endpoint.

WARNING! Node plugin object is instantiated only once when the node is started, all calls to buildXSAMS
should be thread-safe to handle concurrent requests correctly.

Implementation details are covered in the XSAMS tree building section.

• public abstract Map<Dictionary.HeaderMetrics,Integer> getMetrics(RequestInterface userRequest);

Get query metrics. This method is called every time the node receives the HEAD request to the /TAP/sync?
endpoint. RequestInterface userRequest parameter is identical to the one passed to buildXSAMS method.
This method should return a map of VAMDC-COUNT-* HTTP header names and their estimate values. For
the header names and meaning, see [VAMDC-TAP] documentation

• public abstract boolean isAvailable();

Do some really node-specific availability checks. This method is called periodically from the availability
monitor. First call is initiated after the first request to the /VOSI/availability service endpoint. Method may
be used to temporary shutdown the node during the database maintenance, or to do some integrity checks
on the database. Availability check interval may be set in the VAMDC-TAP service configuration file option
selfcheck_interval.

WARNING! this method should not be used for doing periodic maintenance since it is never called before
the first request to the /VOSI/availability service endpoint.

2.3 RequestInterface interface

Calls to the node database plugin through DatabasePlugin interface get as a parameter an object implementing
the org.vamdc.tapservice.api.RequestInterface, providing access to the request information and node software
facilities.

Following methods are part of that interface:

2.2. DatabasePlugin interface 5

Java VAMDC-TAP node software documentation, Release 12.07

• public abstract boolean isValid(); this method returns true if the incoming request is valid and should be
processed.

In case of the false return, node plugin should not do any processing. Query string may be saved for logging
purposes.

• public abstract Query getQuery(); This method returns the base object of the QueryParser library. Query
interface is described in the Query section of this document. A few shortcut methods are provided.

• public abstract LogicNode getRestrictsTree(); The shortcut method to get the logic tree of the incoming
query.

• public abstract Collection<RestrictExpression> getRestricts(); The shortcut method to get all the key-
words of the query, omitting the keywords relation logic.

WARNING! This method should not be used as the main source of data for the query mapping since it
completely looses the query relation logic. Imagine the query:

SELECT * WHERE AtomSymbol=’Ca’ OR AtomSymbol=’Fe’

If this method is used for the query mapping, this query would produce the same result as the query:

SELECT * WHERE AtomSymbol=’Ca’ AND AtomSymbol=’Fe’

which is obviously incorrect.

• public abstract String getQueryString(); The shortcut method to get the incoming query string.

• public abstract boolean checkBranch(Requestable branch); The shortcut method for the
Query.checkBranch(), returns true if the result document is requested to contain a certain branch of XSAMS,
specified by the org.vamdc.dictionary.Requestable name.

This method should be called in all builders to verify if a certain branch should be built, before even execut-
ing or mapping the queries.

The behaviour of the keywords is described in the VAMDC Dictionary documentation [VAMDCDict], the
section Requestables

• public abstract ObjectContext getCayenneContext(); Get Apache Cayenne object context. That is the
main endpoint of the Cayenne ORM library. For more information on using the Apache Cayenne look in
the sections Database Object Model and Query mapping scenarios.

• public abstract XSAMSManager getXsamsManager(); Get XSAMS tree manager, containing several
helper methods. All XSAMS branches built by the node plugin should be attached to it.

• public abstract Logger getLogger(Class<?> classname);

Get the org.slf4j.Logger object. All messages/errors reporting should be done with it.

• public abstract void setLastModified(Date date);

Set the last-modified header of the response. May be called anywhere during request processing for any
number of times. If called more than once, the last modification date is updated only if the subsequent date
is newer than communicated before.

2.3. RequestInterface interface 6

CHAPTER

THREE

DATABASE PLUGIN TESTING

VAMDC-TAP Validator software may be used to test the database plugin operation, so there is no need to install the
web server and deploy web service framework on the development machine. It comes with all the needed libraries
bundled, and from the plugin point of view the operation with the VAMDC-TAP Validator is undistinguishable
from the real-world operation.

To use VAMDC-TAP Validator for the plugin development, simply add the most recent VAMDC-TAP Validator jar
file to the library path and create the new run configuration, indicating the org.vamdc.validator.ValidatorMain
as the main class.

During the first run, open the Settings dialog, switch to the plugin mode and configure the Plugin class name to
contain the fully-qualified name of your class implementing the DatabasePlugin interface interface.

If everything is set up correctly, you should be able to see the list of supported restrictables in the right-top text
area and be able to do the queries.

For more information on the VAMDC-TAP Validator user interface and features, consult the [TAPValidator] doc-
umentation.

3.1 Screenshots

In case you are using the Eclipse for development, the following screenshots might help. Open the project prop-
erties of your database plugin.

7

Java VAMDC-TAP node software documentation, Release 12.07

3.1.1 Adding VAMDC-TAP Validator to the build path

Add the latest VAMDC-TAP Validator JAR to the build path, clicking on the “Add external JARs” button

3.1. Screenshots 8

Java VAMDC-TAP node software documentation, Release 12.07

3.1.2 Managing run configurations

Setup a new run configuration by clicking the “New...” button

3.1. Screenshots 9

Java VAMDC-TAP node software documentation, Release 12.07

3.1.3 Creating run configuration

Create the new run configuration with the following Main class path

3.2 Maven Integration

All Java software developed as a part of VAMDC is available at VAMDC Maven repository

http://dev.vamdc.org/nexus/content/repositories/releases/

To use Maven for dependency management of your plugin, a following sample POM.xml may be used:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.vamdc.%databasename%</groupId>
<artifactId>plugin</artifactId>
<name>databasename plugin for java node software</name>

<parent>

3.2. Maven Integration 10

http://dev.vamdc.org/nexus/content/repositories/releases/

Java VAMDC-TAP node software documentation, Release 12.07

<groupId>org.vamdc.tap</groupId>
<artifactId>vamdctap-plugin</artifactId>
<version>12.07</version>

</parent>

<distributionManagement>
<repository>

<id>releases</id>
<url>http://dev.vamdc.org/nexus/content/repositories/releases</url>

</repository>
</distributionManagement>

<dependencies>
<dependency>

<groupId>org.vamdc.%databasename%</groupId>
<artifactId>database_dao</artifactId>
<version>0.0.1-SNAPSHOT</version>

</dependency>
<dependency>

<groupId>commons-collections</groupId>
<artifactId>commons-collections</artifactId>
<version>3.2.1</version>

</dependency>
</dependencies>

</project>

All the required common dependencies are described within parent pom, vamdctap-plugin

3.2. Maven Integration 11

CHAPTER

FOUR

DATABASE OBJECT MODEL

Java VAMDC-TAP node software implementation suggests and supports the use of Apache Cayenne Object-
Relational Mapping (ORM) library.

Apache Cayenne supports various database engines, notably, MySQL, PostgreSQL, SQLite, Oracle, DB2, Mi-
crosoft SQL Server.

Creation of database objects is made simple thanks to the graphical modeler application, provided as a part of
Cayenne.

Process of creating and using a database model is well described in the project official documentation [CAYDOC]
and there is no need to repeat it in this document. Reading the Cayenne documentation is a MUST for the
understanding and creating efficient query mapper routines and high performance database access classes.

4.1 Step-by-step guide

Here is a small illustrated guide on creating database mappings. We will need Cayenne modeler application, it can
be downloaded from http://cayenne.apache.org/download.html as a part of binary distribution.

4.1.1 Create maven project

First we need to generate a Maven project:

mvn archetype:generate \
-DarchetypeGroupId=org.apache.maven.archetypes \
-DgroupId=org.vamdc.database \
-DartifactId=daoclasses

and create folder src/main/resources where we will put cayenne modeler files.

Maven pom.xml can be replaced with the following contents:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.vamdc.databaseName</groupId>
<artifactId>node_dao</artifactId>
<version>12.07</version>
<name>databaseName database objects</name>

<parent>
<groupId>org.vamdc.tap</groupId>
<artifactId>cayenne_dao</artifactId>
<version>12.07</version>

</parent>

12

http://cayenne.apache.org/download.html

Java VAMDC-TAP node software documentation, Release 12.07

<repositories>
<repository>

<id>vamdc repository</id>
<name>VAMDC stuff for Maven</name>
<url>http://dev.vamdc.org/nexus/content/repositories/releases</url>
<layout>default</layout>

</repository>
</repositories>

</project>

4.1.2 Create Cayenne classes

Let’s open cayenne modeler application and create a new project:

Now we need a dataNode describing database connection

4.1. Step-by-step guide 13

Java VAMDC-TAP node software documentation, Release 12.07

And a dataMap that will contain all mapping tables and classes

After the DataMap is created, we need to import the database schema:

4.1. Step-by-step guide 14

Java VAMDC-TAP node software documentation, Release 12.07

!Note the “Meaningful PK” flag is set for the sake of the generated classes to have getters for the table primary
key field.

4.1. Step-by-step guide 15

Java VAMDC-TAP node software documentation, Release 12.07

As a result for each database table a separate Java class is generated, containing attribute fields and relationship
references.

For many-to-many relations relationships need to be created manually: create a new relationship, press on the
violet I button, indicate the path in the bottom of the window.

4.1. Step-by-step guide 16

Java VAMDC-TAP node software documentation, Release 12.07

The last step is to generate class objects:

4.1. Step-by-step guide 17

Java VAMDC-TAP node software documentation, Release 12.07

As a destination directory, src/main/java of Maven project needs to be specified. Cayenne project itself needs to
be saved next to it, in src/main/resources.

4.1. Step-by-step guide 18

Java VAMDC-TAP node software documentation, Release 12.07

4.2 Notable Cayenne features used

The goal of using ORM framework is not only to get object-oriented view of database, but rather to simplify and
automate query translation.

4.2.1 Relations traversing

If properly defined, database model contains information about all tables relations through the foreign keys. While
constructing the query, those relations can be automatically traversed to form the correct query with desired selec-
tion criterias.

For example, we have a table ‘artists’ with fields ‘id’ and ‘name’ and a table ‘albums’ with fields ‘id’, ‘artistId’,
‘name’ and ‘year’ For the table ‘albums’ we have one-to-one relation with the ‘artists’ table, called ‘albu-
mArtist’ and for artists the reverse one-to-many relationship ‘artistAlbums’

So, if we want to get all artists that released albums in 1980, we would create an Expression containing the path
from the ‘artists’ table to the ‘year’ field of ‘albums’ table and the expression type ‘match’

Expression exp = ExpressionFactory.matchExp("artistAlbums.year", 1980);
SelectQuery query = new SelectQuery(Artists.class,exp);
List<Artists> artists = context.performQuery(query);

To add another constraint on a query, we may redefine the Expression:

exp = exp.andExp(ExpressionFactory.likeExp("name", "Thomas%"));

Here we are not traversing the relationship, but using the table field as a constraint directly.

Normally, none of the expressions would require ‘manual’ construction, they will be translated from the incoming
queries. Query translation is described in a separate chapter Query mapping scenarios

4.2.2 Path aliases

Imagine that we have the scenario of many-to-many relation through a separate table. For the previous example,
let’s add a table ‘artistAlbums’ with three columns, ‘id’, ‘artistId’ and ‘albumId’ Table ‘albums’ doesn’t any
more contain the ‘artistID’ column, but both forward and reverse relations are still called ‘albumArtists’ and
‘artistAlbums’

If we need to select artists that released albums both in 1980 and 1990, joining expressions neither with exp.andExp
nor exp.orExp would give us appropriate queries.

exp.andExp() would return no results,

exp.orExp() would return all artists that released albums either in 1980 or 1990.

For such a case, Cayenne provides aliases mechanism:

Expression e1 = ExpressionFactory.match("artistAlbumsAlias1.year", 1980);
Expression e2 = ExpressionFactory.match("artistAlbumsAlias2.year", 1990);
Expression e = e1.andExp(e2);
q = new SelectQuery(Artists.class, e);
q.aliasPathSplits("artistAlbums", "artistAlbumsAlias1", "artistAlbumsAlias2");

That last command tells the select query how to interpret the alias. Because the aliases are different, the SQL
generated will have two completely separate set of joins. This is called a “split path”.

4.2. Notable Cayenne features used 19

CHAPTER

FIVE

XSAMS TREE BUILDING

XSAMS is an XML schema, adopted within VAMDC for data exchange.

Java node software implementation uses JAXB library for mapping between objects and XML elements.

Contrary to the Python/Django node software, Java version doesn’t provide limited keyword-based XML genera-
tor.

Each node plugin is responsible by itself for building object trees corresponding to the document branches and for
attaching them to the main tree, managed by the node software. Node software than outputs the built tree as XML
XSAMS document.

XSAMS objects can be constructed by extension of Jaxb mapping classes with convenience methods, provided
within xsams-extra library. Constructors can receive Cayenne mapping objects as argument and initialize appro-
priate mapping XML fields. Such an approach allows to instantly apply an arbitrary processing to any field/element
value or their combinations.

5.1 Example constructor class

As an example let’s look at the BASECOL Source element constructor:

package org.vamdc.basecol.xsams;

import java.util.ArrayList;
import java.util.List;

import org.vamdc.basecol.dao.RefsArticles;
import org.vamdc.basecol.dao.RefsGroups;
import org.vamdc.xsams.XSAMSManager;
import org.vamdc.xsams.schema.SourceCategoryType;
import org.vamdc.xsams.schema.SourceType;
import org.vamdc.xsams.util.IDs;

public class Source extends SourceType{

public Source(RefsArticles article){

setSourceID(IDs.getSourceID(article.getArticleID().intValue()));
setCategory(SourceCategoryType.fromValue(article.getJournalRel().getCategory()));

setSourceName(article.getJournalRel().getSmallName());

//Year
setYear(article.getYear().intValue());

//Authors
setAuthors(new Authors(article.getFlatAuthorRel()));
//Title

20

Java VAMDC-TAP node software documentation, Release 12.07

setTitle(article.getTitle());
//URL
setUniformResourceIdentifier(article.getUrl());
//Volume
setVolume(article.getVolume());
//Pages
String pagesbe = article.getPage();
if (pagesbe!=null){

if (pagesbe.contains("-")){
fillPages(pagesbe,"-");

}else if (pagesbe.contains("\\+")){
fillPages(pagesbe,"+");

}
};

}
//...

}

The full source is available in org.vamdc.basecol.xsams.Source class.

Here, RefsArticles is a BASECOL Cayenne mapping object identifying one source record, and
SourceType is a root element of XSAMS Sources branch. SourceType is defined by the class
org.vamdc.xsams.schema.SourceType.

Collection of RefsArticles objects is retrieved automatically through the Cayenne model relation. For each refer-
ence element we need to check if it is already attached to the XSAMS Document tree. If not, then the mentioned
above builder is called, and finally, after the SourceType object is built, it needs to be attached to the document
tree:

public static List<SourceType> getSources(
List<RefsGroups> referenceRel,
XSAMSManager document,
boolean filterSource) {

//Here sources will be added
ArrayList<SourceType> result = new ArrayList<SourceType>();

/*always add database self-reference*/
result.add(document.getSource(IDs.getSourceID(0)));

if (referenceRel==null)
return result;

/*Add all sources that are stated as ’isSource’*/
for (RefsGroups myref:referenceRel){

RefsArticles article = myref.getArticleRel();
if (article!=null && (myref.getIsSource() || !filterSource)){

//Check if source with this ID was already referenced:
SourceType source = document.getSource(

IDs.getSourceID(article.getArticleID().intValue()));
if (source == null){//If not, create and add it:

source = new Source(article);
document.addSource(source);

}
//Now, add source record to the list of source references
result.add(source);

}
}
return result;

}

Later this list should be added to the element requiring source reference, for example, we create a new DataType

5.1. Example constructor class 21

Java VAMDC-TAP node software documentation, Release 12.07

value and have references attached to it:

DataType quantity = new DataType(table.value, table.units);
quantity.addSources(Source.getSources(table.sourceRelation,request,true));

Here, “table” is an object of your database model, providing value and units fields plus the relation to the sources.
First, we need to create a quantity of the DataType, then we construct all related source elements, automatically
adding them to the XSAMS document tree if necessary, and attach to the quantity element.

5.2 Attaching objects to XSAMS Document tree

RequestInterface provides access to XSAMS Document tree through XSAMSManager interface, implementa-
tion of which can be obtained by calling getXsamsManager() method of the request.

org.vamdc.xsams.XSAMSManager interface provides a handful of methods to add different branches to the
XSAMS tree, getting them by known ID or iterating through all of them. For a full list of methods, consult the
JavaDoc of the JAXB XSAMS library [XSAMSJavaDoc].

Notable are:

• public String addSource(SourceType source);

• public String addElement(SpeciesInterface species);

• public int addStates(String speciesID,Collection<? extends StateInterface> states);

• public boolean addProcess(Object process);

for adding correspondingly sources, species, states and processes.

5.3 Identifiers generation

Each major block of XSAMS has it’s own unique identifier, which is a string starting with a block-specific char-
acter.

To assure VAMDC-wide uniquiness of those identifiers, permitting merging of documents, NodeSoftware (both
Python and Java implementations) have a mechanism for adding node-specific prefix.

For Java node software it is a special class, org.vamdc.xsams.IDs, providing several constants and methods.

• public static String getID(char prefix, String suffix) Most generic method, allowing to generate an arbi-
trary ID. All allowed prefix values are enumerated as public final static char constants:

– IDs.SOURCE

– IDs.ENVIRONMENT

– IDs.SPECIE

– IDs.FUNCTION

– IDs.METHOD

– IDs.STATE

– IDs.MODE

– IDs.PROCESS

• public static String getSourceID(int idSource)

• public static String getEnvID(int idEnv)

• public static String getFunctionID(int idFunction)

• public static String getMethodID(int idMethod)

5.2. Attaching objects to XSAMS Document tree 22

Java VAMDC-TAP node software documentation, Release 12.07

• public static String getStateID(int EnergyTable, int Level)

• public static String getModeID(int molecule, int mode)

• public static String getSpecieID(int idSpecies)

• public static String getProcessID(char group, int idProcess)

All those ID generation methods automatically add the configured node-specific ID prefix.

5.4 XSAMS JAXB convenience extensions

For convenience, all XSAMS object classes were extended and grouped into packages by the schema block they
are appearing in:

• org.vamdc.xsams.common for elements used all around the schema

• org.vamdc.xsams.environments for elements from the Environments branch

• org.vamdc.xsams.functions for elements from the Functions branch

• org.vamdc.xsams.methods for elements from the Methods branch

• org.vamdc.xsams.process for elements from the Processes (collisions,transitions) branch

• org.vamdc.xsams.sources for elements from the Sources branch

• org.vamdc.xsams.species for elements from the Species (atoms, molecules, particles, solids) branch

Few value constructors were added:

• class org.vamdc.xsams.species.molecules.ReferencedTextType:

public ReferencedTextType(String value);

Creates a ReferencedTextType element with the defined value

• class org.vamdc.xsams.sources.AuthorsType:

public AuthorsType(Collection<String> authors)
public AuthorsType(String concatAuthors, String separator)

First constructor creates Authors elemen with all authors from the passed collection, second one splits the
first argument using the separator from the second one and puts the resulting strings into distinct Author
records.

• class org.vamdc.xsams.sources.AuthorType:

public AuthorType(String name)

Creates a single Author element with the name from the argument.

• class org.vamdc.xsams.common.TabulatedDataType:

public TabulatedDataType(String... CoordsUnits);
public TabulatedDataType(Collection<String> columns);

Constructors, defining multi-dimensional tables. Parameters passed define the units of axes,
the last element of the collection or the last string define the units for Y (values). The
org.vamdc.xsams.common.TabulatedDataType class contains a full set of methods for the XSAMS tables
manipulation, so if you need to use them it is worth reading the XSAMS library JavaDoc [XSAMSJavaDoc]

• class org.vamdc.xsams.common.DataType:

public DataType(Double value,String units, AccuracyType accuracy, String comments);
public DataType(Double value,String units);

5.4. XSAMS JAXB convenience extensions 23

Java VAMDC-TAP node software documentation, Release 12.07

You will certainly use DataType objects, since almost any quantity in XSAMS is represented by them.
Two constructors are provided, with parameter names speaking for themselves. Source references may be
attached to created object later by calling the addSource() or addSources() methods.

• class org.vamdc.xsams.common.ValueType:

public ValueType(Double value, String units);

ValueType, used as often as the DataType, supports no source reference and is a simple extension of the
Double type, providing the units attribute. Convenience constructor is also provided for it.

• class org.vamdc.xsams.common.ChemicalElementType:

public ChemicalElementType(int charge, String symbol);

Used in Atoms and Solids branches, ChemicalElementType has a convenience constructor consuming the
atom nuclear charge and it’s chemical element symbol.

So far, this is the full list of all convenience constructors created for the XSAMS library. If you need more
convenience constructors or methods to be added, contact the Java node software authors and those methods
would be included in the next software release.

5.5 Case-By-Case generic builders

Molecular state quantum numbers in XSAMS are represented as additional XML sub-schemas, defining an ele-
ment QNs with ordered child quantum number elements. Each case has it’s own separate namespace, that means
that Java JAXB mapping of each case would be in a separate package and the user would either require a generic
builder using Java Reflection or have a builder for each case.

Since all cases are just combinations of roughly 30 quantum numbers, the decision was taken to create an interme-
diate structure able to keep all of them plus the case identifier. The class name is org.vamdc.xsams.util.StateCore.
It is able to contain a collection of quantum numbers and other important state-related information.

Each quantum number is represented by the org.vamdc.xsams.util.QuantumNumber object. It contains the
value, optional label and mode index plus the mandatory quantum number type, defining the place where in the
case-by-case representation the value will go.

Each autogenerated case package is complemented with it’s own builder. The general case builder
org.vamdc.xsams.cases.CaseBuilder accepts StateCore as a single parameter and is calling case builders based
on the integer case ID, returning the built tree. Case ID is the same as it is defined in the case-by-case documen-
tation. The following code illustrates the use:

StateCore statedata = new BasecolStateCore(myetable, level);
MolecularStateType molecularState = new MolecularStateType();
// filling in other MolecularStateType fields is omitted
if (myrequest.checkBranch(Requestable.MoleculeQuantumNumbers))

molecularState.getCases().add(CaseBuilder.buidCase(statedata));

Here, BasecolStateCore is a custom class that extends StateCore to automatically fill in all the fields from the
Basecol Cayenne model.

MolecularStateType is the autogenerated XSAMS JAXB mapping class that should be fed direcly to the XSAMS
library by calling the:

RequestInterface.getXsamsroot().addState(speciesID, molecularState);

Obviously, the element corresponding to the speciesID should already be there.

5.5. Case-By-Case generic builders 24

CHAPTER

SIX

VSS QUERY RECOGNITION AND
MAPPING

Obviously, each node has it’s own database structure. In order to fetch data requested by the NodeSoftware client,
incoming query needs to be mapped into one or multiple queries to the node database. Java Node software tries to
make the process of query mapping as simple and sophisticated as possible.

6.1 Query keywords tree

First, as Java node software receives a query, it validates it and parses into a tree of objects. Intermediate nodes of
that tree are representing boolean relations and leafs keep the information about the query keywords, comparison
operator and values.

For example, query:

SELECT * WHERE reactant1.AtomSymbol = ’C’ AND reactant2.AtomSymbol = ’O’
AND (CollisionCode=’inel’ or CollisionCode=’elas’)

would map into a tree

6.2 Tree objects

Following objects are representing the incoming query tree

25

Java VAMDC-TAP node software documentation, Release 12.07

6.2.1 Query

Main interface of the query parser library, provides access to the query tree and few utility methods.

• public LogicNode getRestrictsTree() is the main method, returning the root of the query tree.

Accompanying are two methods, getFilteredTree and getPrefixedTree, returning subsets of tree.

• public LogicNode getFilteredTree(Collection<Restrictable> allowedKeywords) returns a subtree con-
taining only keywords listed in collection passed as a parameter.

• public LogicNode getPrefixedTree(VSSPrefix prefix, int index) returns a subtree containing only key-
words having the defined prefix and index. If null is passed as a prefix, returned tree would only contain
nodes without any prefix.

• public Collection<Prefix> getPrefixes() returns a collection of prefixes present in the query

• public List<RestrictExpression> getRestrictsList() is the most dummy method, returning a list of all
keywords specified in the query. Using that list as a main source for query mapping is discourages since it
leads to the loss of logic.

In getFilteredTree() and getPrefixedTree() the filtering algorithm removes the irrelevant RestrictExpression ob-
jects from LogicNodes, then removes logicNodes that has no children.

For example, in case of filtering by the prefix:

• Original query:

select ALL where reactant1.AtomSymbol=’C’ and reactant1.AtomIonCharge=1
and reactant2.AtomSymbol=’H’ and reactant2.AtomIonCharge=-1 and EnvironmentTemperature > 100

• Effective query for getPrefixedTree(VSSPrefix.REACTANT, 1):

select ALL where reactant1.AtomSymbol=’C’ and reactant1.AtomIonCharge=1

• Effective query for getPrefixedTree(VSSPrefix.REACTANT, 2):

select ALL where reactant2.AtomSymbol=’H’ and reactant2.AtomIonCharge=-1

• Effective query for getPrefixedTree(null, 0):

select ALL where EnvironmentTemperature > 100

• Effective query for getFilteredTree() with a collection containing only AtomSymbol:

select ALL where reactant1.AtomSymbol=’C’ and reactant2.AtomSymbol=’H’

6.2.2 LogicNode

LogicNode interface represents a node of the query tree. getOperator() method provides access to the node
operator, getValues() returns a collection of child nodes.

For certain operators like NOT, getValue() method also makes sense, returning a single child element.

6.2.3 RestrictExpression

RestrictExpression elements are the leafs of the logic tree, representing the actual query restriction keywords.

Same as the LogicNode, RestrictExpression provides getOperator(), getValues() and getValue() methods, plus

• public Prefix getPrefix() method, returning this expression prefix

• public Restrictable getColumn() method, returning a restriction keyword from the dictionary for this ex-
pression

6.2. Tree objects 26

Java VAMDC-TAP node software documentation, Release 12.07

6.2.4 Prefix

Prefix is a simple class, keeping VSSPrefix from the dictionary and integer index of the prefix.

• int getIndex() method provides access to index, and

• VSSPrefix getPrefix() gives access to the prefix name.

6.3 Query mapping scenarios

To obtain an Apache Cayenne Expression object, several mapping scenarios are provided, plus plugin developer
is free to implement his own one.

6.3.1 Mapping of logic tree

Mapping of logic tree nodes is always trivial and is one-to-one with Cayenne Expression.andExp(), Expres-
sion.orExp(), Expression.notExp(), see the Cayenne Javadoc [CAYJAVADOC]

Usable example of such mapper is provided in org.vamdc.tapservice.query.QueryMapper class (vamdctap-
querymapper library), that is bundled both with the TAPValidator and the node software.

6.3.2 Mapping of RestrictExpression elements

Mapping of RestrictExpression elements may be a bit more tricky, since they contain lots of information:

• prefix

• prefix index

• VAMDC dictionary keyword

• comparison operator

• value/value set

VAMDC keyword itself may map to one or more database columns, for example, MoleculeInchiKey keyword,
in case of a database that contains all species within one table, says that the field is InchiKey and that we must
verify that species we are looking at are actually molecules. To correctly handle such a keyword we will need to
AND two Cayenne Expressions and add them to the mapped tree.

Prefix and prefix index may also require a check for a certain field, like if element is a reactant or product in
chemical reaction. In this case it may make sense to loop over all defined prefixes using Query.getPrefixes()
method, then filter the incoming query tree by the prefix with the Query.getPrefixedTree(...), map it as usual, add
the desired logic to the resulting expression and finally AND the mapped filtered subtree to the resulting query.

6.4 Query Mapping Library

As a part of Java node software, a Query Mapper implementation is provided. It is able to map incom-
ing query trees into cayenne Expression objects. Query Mapper implementation is a part of vamdctap-
querymapper library, represented by two interfaces and two generic implementations within a package
org.vamdc.tapservice.querymapper

• KeywordMapper interface defining an interface of RestrictExpression mapper;

• KeywordMapperImpl generic implementation, providing one-to-one mapping of Restrictable keywords to
database fields without value transformation. In many cases node plugin may use extensions of this class,
implementing value translation, to-many fields mapping or prefix-conditional mapping.

• QueryMapper interface defining the library main interface;

6.3. Query mapping scenarios 27

Java VAMDC-TAP node software documentation, Release 12.07

• QueryMapperImpl generic implementation, keeping references to KeywordMappers and responsible for
mapping parsed query trees to Cayenne Expressions. Boolean logic operations between nodes are translated
one-to-one with Cayenne andExp, orExp and notExp, KeywordMappers are called for each RestrictExpres-
sion encountered.

6.4.1 Using QueryMapper library

From the plugin side work with the mapper library is performed the following way:

• In some class we initialize a static variable QueryMapper, in constructor adding keyword mappers for each
keyword supported by the node:

public final static QueryMapper queryMapper= new QueryMapperImpl(){{
this.addMapper(

new KeywordMapperImpl(Restrictable.IonCharge)
.addNewPath("symelementRel.elementRel.charge")
.addNewPath("partyRel.elementRel.charge")
);

}};

Here subsequent calls to addNewPath method define cayenne relations path originating from different
primary tables, both used for mapping. The first call is for species query, the second for processes.

• Own extensions of KeywordMapperImpl may be implemented to add the possibility to map keywords to
multiple fields, translate values from query units to database units, or add any other specific handling.

• QueryMapper automatically keeps a list of Restrictable keywords supported by node, it can be fetched using
public Collection<Restrictable> getRestrictables(); method.

• From XSAMS builder methods mapAliasedTree(...) or mapTree(...) methods are called to construct
Cayenne Expressions from incoming query trees or filtered subtrees.

6.4. Query Mapping Library 28

CHAPTER

SEVEN

QUERY METRICS SUPPORT

To enable the estimation of the amount of data the node will return for any specific query, node software supports
HEAD request queries, containing the same set of parameters as normal GET/POST queries.

As a response node software provides a set of HTTP headers indicating the estimate count of each XSAMS block
elements:

• VAMDC-COUNT-SPECIES Total count of the atomic Ion and Molecule records with distinct SpecieID
attribute.

• VAMDC-COUNT-ATOMS Count of the atomic Ion records with distinct SpecieID attribute.

• VAMDC-COUNT-MOLECULES Count of the Molecule records with distinct SpecieID attribute.

• VAMDC-COUNT-SOURCES Count of distinct Source records

• VAMDC-COUNT-STATES Count of distinct State records, both AtomicState and MolecularState com-
bined

• VAMDC-COUNT-COLLISIONS Count of the CollisionalTransition elements of the Processes branch of
XSAMS.

• VAMDC-COUNT-RADIATIVE Count of the RadiativeTransition elements of the Processes branch of
XSAMS.

• VAMDC-COUNT-NONRADIATIVE Count of the NonRadiativeTransition elements of the Processes
branch of XSAMS.

• Last-Modified HTTP header can also be sent to client to indicate the time when the extracted data
was modified last time.

7.1 getMetrics(...) method

Producing such a response doesn’t require to build a document tree, so a dedicated plugin method is called by the
node software for each HEAD request.

public abstract Map<Dictionary.HeaderMetrics,Object> getMetrics(RequestInterface userRequest);

userRequest has the same interface as the parameter of buildXSAMS method, but it doesn’t expect to have XSAMS
tree objects attached, so XSAMSManager object should not be accessed.

Typical logic of the method would be like that:

• Translate the query using the same translation strategy as builders use;

• Convert the query into Count() using org.vamdc.tapservice.query.QueryUtil.countQuery(DataContext,SelectQuery)
static method;

• Add the resulting value to the map of headers;

29

Java VAMDC-TAP node software documentation, Release 12.07

• If header value is greater than zero, set the value for Last-Modified header using RequestInterface set-
LastModified(...) method and org.vamdc.tapservice.query.QueryUtil.lastTimestampQuery(...) transla-
tor to obtain the value from a database last-modified date column.

• iterate if more then one builder is normally used

7.2 Sample implementation

Here follows the sample implementation from BASECOL database plugin

@Override
public Map<HeaderMetrics, Integer> getMetrics(RequestInterface request) {

if (request.isValid() && checkRequest(request)){
return Metrics.estimate(request);

}
return null;

}

and Metrics.estimate has the following implementation:

public static Map<HeaderMetrics, Object> estimate (RequestInterface request){
Map<HeaderMetrics, Object> estimates = new HashMap<HeaderMetrics, Object>();

//Estimate collisions
Expression colExpression = CollisionalTransitionBuilder.getCayenneExpression(request);
SelectQuery query=new SelectQuery(Collisions.class,colExpression);
Long collisions = QueryUtil.countQuery((DataContext) request.getCayenneContext(), query);

if (collisions>0){
estimates.put(HeaderMetrics.VAMDC_COUNT_COLLISIONS, collisions.intValue());

request.setLastModified(QueryUtil.lastTimestampQuery(
(DataContext) request.getCayenneContext(),
query,
"modificationDate"));

}

//Estimate species
Expression spExpression = ElementBuilder.getExpression(request);
SelectQuery spQuery=new SelectQuery(EnergyTables.class,spExpression);
Long etables = QueryUtil.countQuery((DataContext) request.getCayenneContext(), spQuery);

if (etables>0){
estimates.put(HeaderMetrics.VAMDC_COUNT_SPECIES, etables.intValue());

request.setLastModified(QueryUtil.lastTimestampQuery(
(DataContext) request.getCayenneContext(),
spQuery,
"modificationDate"));

}

return estimates;

}

Here, getExpression(...) methods are the same translator methods as used in corresponding XSAMS builders.

7.2. Sample implementation 30

CHAPTER

EIGHT

VAMDC-TAP NODE DEPLOYMENT

8.1 Install Java application server

Java implementation of VAMDC-TAP node software is intended to be run as a web application within Java appli-
cation server like Apache Tomcat. For installation instructions refer to the server documentation.

8.2 Deploy node software

Deploying the Java implementation is a simple process that requires not that many steps. If your database plugin
is already throughly tested with the VAMDC-TAP Validator, everything should just work.

1. Deploy a recent vamdctap-webservice war using your server default method. For Apache Tomcat it would
require just to copy .war file into webapps directory with a desired webservice name.

2. It is unlikely that you would need to modify servlet configuration file, but just in case, it’s located at: WEB-
INF/web.xml

3. Load the address http://$BASEURL/config to see the default configuration, adjust it as necessary and put
into tapservice.conf in WEB-INF/config. For the full description of all configuration parameters, consult
VAMDC-TAP service configuration file section of this document;

4. Copy your Apache Cayenne configuration xml to WEB-INF/config/cayenne/ (path can be adjusted in WEB-
INF/web.xml) Database credentials can be changed in WEB-INF/config/cayenne/....driver.xml (filename is
specific to your database)

5. Copy your DAO jar and plugin jar (or it can be combined in single jar file) to WEB-INF/lib/ directory of
your servlet. !WARNING! Don’t try to copy it to webserver or java system library directory, it won’t work,
you’ll be getting strange ClassCast exceptions on every request.

6. Restart application server or reload application to update the configuration. If you open the application root
URL, you will get an index page with all relevant addresses.

7. Check availability and capabilities if everything is fine. Try some test queries with VAMDC-TAP Validator

8. !WARNING! Do a backup copy of all configuration files and .jar files that were put or adjusted somewhere
in the deployed application folder, notably the node configuration files. All those files will be erased on
every vamdctap-webservice war update

8.3 VAMDC-TAP service configuration file

Java VAMDC-TAP service is configured through a single file, containing a set of key-value pairs.

Once service is deployed, you may get configuration info through http://host.name:8080/tapservice/config URL,
where host.name:8080/tapservice is the url to your web application deployment. If service is not configured, only
the default configuration set is presented.

31

http://host.name:8080/tapservice/config

Java VAMDC-TAP node software documentation, Release 12.07

8.3.1 Default configuration parameters

force_sources=true
limits_enable=false
limit_states=-1
selfcheck_interval=60
dao_test_class=org.vamdc.database.dao.ClassName
test_queries=select species where atomsymbol like ’%’;
xsams_id_prefix=DBNAME
baseurl=http://host.name:8080/tapservice
database_plug_class=org.vamdc.database.builders.ClassName
xml_prettyprint=false
limit_processes=-1

8.3.2 Detailed parameters description

• limits_enable = (true|false) enable output document element count limits

• limit_states = N - limit maximum output states count in document to N, “-1” disables the limit.

• limit_processes = N - limit maximum output processes count in document to N, “-1” disables the limit.

• selfcheck_interval = N interval in seconds between service availability self checks. First check is initiated
after the first request to /VOSI/availability endpoint. Background checks allow more accurate tracking of
“upSince”, “backAt” and “downAt” time attributes.

• database_plug_class = org.vamdc.database.builders.ClassName Class name for builder implementing
org.vamdc.tapservice.api.DatabasePlugin interface It is instantiated on tapservice startup and all commu-
nication between framework and builders go through it.

• dao_test_class = fully.qualified.apache.cayenne.dao.Object class name for self availability checking, it
must be the table with more than 10 records. May be omitted, but then availability endpoint won’t work
properly.

• xsams_id_prefix = DBNAME Prefix for XSAMS library id generator org.vamdc.xsams.util.IDs, used to
produce all XML id/idRef references. Each node needs to have it’s own prefix to maintain globall uniquiness
of identifiers in XSAMS documents.

• baseurl = http://host.name:8080/tapservice Base url used in VOSI/capabilities output, must contain glob-
ally accessible URL pointing to the VAMDC-TAP service web application root. Multiple addresses may be
specified to indicate mirror nodes, separated by # symbol.

• xml_prettyprint = (true|false) Produce pretty-printed XML documents or output everything in a single line
of text with no linefeeds. Defaults to false, enabling it increases the size of output XML document by ~20%

• test_queries = select species where atomsymbol like ‘%’; semicolon-separated list of valid test queries for
the node. It must contain only valid queries that demonstrate the full functionality of the node. On the other
hand such queries must produce compact documents, since those queries would be used for periodic node
testing.

8.4 Cayenne configuration using DBCP

To avoid database connection time-out errors, Apache commons-dbcp library should be used in junction with
Apache Cayenne. Configuration change for this case is simple and straight-forward. vamdctap-webservice
application archive already comes with bundled commons-dbcp jar.

• First, in cayenne.xml node element factory attribute have to be changed for org.apache.cayenne.conf.DBCPDataSourceFactory
and datasource attribute should indicate a file name that will contain key-value pairs of dbcp configu-
ration;

• Second, dbcp configuration file should be put in cayenne configuration directory with the name same
as specified in datasource attribute and the following parameters:

8.4. Cayenne configuration using DBCP 32

Java VAMDC-TAP node software documentation, Release 12.07

– cayenne.dbcp.driverClassName=com.mysql.jdbc.Driver

– cayenne.dbcp.url=jdbc:mysql://hostname:port/databasename

– cayenne.dbcp.username=databaseUserName

– cayenne.dbcp.password=databasePassword

Other DBCP parameters also may be adjusted, see http://commons.apache.org/dbcp/configuration.html
for more information.

8.5 Database updates and cache

Java node software maintains it’s own database cache. If database fields are updated, this cache needs to be
purged. To force node to purge it’s caches, request to /clear_cache resource needs to be sent. The full URL will
be http://host.name:8080/tapservice/clear_cache. As a result, single text line will be sent indicating the number of
records that were contained in the cache. This URL may be accessed either manually, included as a frame in node
database administration panel or accessed by a special script that tracks database modifications in some way.

8.6 Node mirroring

The best way to set up node mirrors is to configure database replication on each mirror and deploy multiple
instances of node software on mirror servers, each of them using own mysql installation. Deployment procedure
of node software on master server and mirrors is the same.

8.6.1 Mysql master server configuration

On master server we need to enable binary logging in my.cnf:

[mysqld]:
server-id = 1
log-bin = /var/lib/mysql/mysql-bin
replicate-do-db = databasename
bind-address = 0.0.0.0

and add user with replication privileges in mysql console:

mysql@master> GRANT replication slave ON "databasename".* TO "replication"@"mirror.ip.or.hostname"
IDENTIFIED BY "password";

mysql service needs to be restarted after that.

After server restart we need to create a database dump:

mysql@master> FLUSH TABLES WITH READ LOCK; mysql@master> SET GLOBAL read_only
= ON; mysql@master> SHOW MASTER STATUSG

#mysqldump -u root -p databasename | bzip2 -9 -c - > database_dump.sql.bz2

mysql@master> SET GLOBAL read_only = OFF;

Here we need to note File and Position values from the mysql command Show Master Status.

8.6.2 Mysql slave configuration

On a slave (replica) server we need to set up the following things:

import mysql dump for database:

8.5. Database updates and cache 33

http://commons.apache.org/dbcp/configuration.html
http://host.name:8080/tapservice/clear_cache
mailto:mysql@master
mailto:mysql@master
mailto:mysql@master
mailto:mysql@master

Java VAMDC-TAP node software documentation, Release 12.07

#bzip2 -d -c database_dump.sql.bz2 | mysql -u root -p databasename

In my.cnf:

[mysqld]:
server-id = 2
relay-log = /var/lib/mysql/mysql-relay-bin
relay-log-index = /var/lib/mysql/mysql-relay-bin.index
replicate-do-db = testdb

restart mysql service and start replication:

mysql@replica> CHANGE MASTER TO MASTER_HOST = "master.ip.or.host", MASTER_USER = "replication",
MASTER_PASSWORD = "password", MASTER_LOG_FILE = "mysql-bin.000003", MASTER_LOG_POS = 98;
mysql@replica> start slave;

where MASTER_LOG_FILE and MASTER_LOG_POS parameters we take from the SHOW MASTER STATUS
G mysql command on master server.

Then we may see the slave server status by issuing mysql command:

mysql@replica> SHOW SLAVE STATUS\G

Following status parameters are important and indicated values show that replication is working properly:

• Slave_IO_State: Waiting for master to send event

• Slave_IO_Running: Yes

• Slave_SQL_Running: Yes

• Seconds_Behind_Master: 0

Changing Read_Master_Log_Pos parameter value may indicate that cache of node software on the mirror needs
to be purged. A script can be set up to track this parameter, if no other mean of cache invalidation is used.

In detail mysql replication is described in the official manual: http://dev.mysql.com/doc/refman/5.5/en/replication.html

8.6.3 Node mirror registration

Procedure for registering a new mirror is very simple: In configuration of main node and all mirrors another url
needs to be added to the end of baseurl parameter, separated with hash (#) symbol.

After reload of master node web application, registry needs to be updated with new Capabilities including new
mirror. For registry update, please contact VAMDC registry maintainer via support@vamdc.org.

8.6. Node mirroring 34

http://dev.mysql.com/doc/refman/5.5/en/replication.html
mailto:support@vamdc.org

BIBLIOGRAPHY

[CAYDOC] http://cayenne.apache.org/doc30/modeler-guide.html

[CAYJAVADOC] http://cayenne.apache.org/doc30/api/index.html

[XSAMSJavaDoc] http://dev.vamdc.org/nexus/content/repositories/releases/org/vamdc/xml/

[MavenRepo] http://dev.vamdc.org/nexus/content/repositories/releases/

[JavaNodeSoftware] http://www.vamdc.org/software/

[VAMDC-TAP] http://www.vamdc.org/documents/standards/dataAccessProtocol/vamdctap.html#http-header-
information

[VAMDCDict] http://www.vamdc.org/documents/standards/dictionary/

[TAPValidator] http://www.vamdc.org/software/

35

http://cayenne.apache.org/doc30/modeler-guide.html
http://cayenne.apache.org/doc30/api/index.html
http://dev.vamdc.org/nexus/content/repositories/releases/org/vamdc/xml/
http://dev.vamdc.org/nexus/content/repositories/releases/
http://www.vamdc.org/software/
http://www.vamdc.org/documents/standards/dataAccessProtocol/vamdctap.html#http-header-information
http://www.vamdc.org/documents/standards/dataAccessProtocol/vamdctap.html#http-header-information
http://www.vamdc.org/documents/standards/dictionary/
http://www.vamdc.org/software/

	Introduction
	Used software
	VAMDC common components
	Node-specific components
	Comparison with the python/django node software
	Node implementation

	Database plugin
	Request processing
	DatabasePlugin interface
	RequestInterface interface

	Database plugin testing
	Screenshots
	Maven Integration

	Database Object Model
	Step-by-step guide
	Notable Cayenne features used

	XSAMS tree building
	Example constructor class
	Attaching objects to XSAMS Document tree
	Identifiers generation
	XSAMS JAXB convenience extensions
	Case-By-Case generic builders

	VSS query recognition and mapping
	Query keywords tree
	Tree objects
	Query mapping scenarios
	Query Mapping Library

	Query metrics support
	getMetrics(...) method
	Sample implementation

	VAMDC-TAP node deployment
	Install Java application server
	Deploy node software
	VAMDC-TAP service configuration file
	Cayenne configuration using DBCP
	Database updates and cache
	Node mirroring

	Bibliography

