Application Programming Interface (API) for the HITRANonline web service. Current state and goals

Roman V. Kochanov1,2, Christian Hill1, Jonas S. Wilzewski1, Iouli E. Gordon1, and Laurence S. Rothman1

1Harvard-Smithsonian Center for Astrophysics
Atomic and Molecular Physics Division
60 Garden St, Cambridge MA 02138, USA

2Laboratory of Quantum Mechanics of Molecules and Radiative Processes,
Tomsk State University,
Prospekt Lenina, 36, Tomsk 634050, Russia
What is API?

- API, an abbreviation of *application program interface*, is a set of routines, protocols, and tools for building software applications. The API specifies how software components should interact and be used in a program code.

- A good API makes it easier to develop a program by providing all the building blocks. A programmer then puts the blocks together.
Why is it a powerful tool?

- **Functionality**
 - Normally leads to faster development
 - Takes a burden of parsing of the “strict” format

- **Flexibility**
 - Customizable format of the data representation
 - Possibility to extend functionality

- **Interaction with other software libraries**
 - Huge number of libraries (Python, Fortran, C++ ...)

What is HITRANonline API?

- Source code library written in Python
- The code is distributed as open source
- Main goal is providing a tool to work with the HITRAN data locally
Purpose of HITRANonline API

- Retrieve and use of HITRANonline data (line lists, cross sections, molecule and isotopologue info...) from a program written in Python
- Reduce the load of HITRANonline web service (calculation of lineshapes and cross sections is resource-demanding!)
- Give more flexibility in data filtering
- Provide a possibility to work with HITRAN data offline
- Make use of machines with parallel architecture (multicore cpus, clusters...)
Features of HITRANonline API

- Basic capabilities: download and filter line lists (cross sections), partition functions, line profiles, cross section calculation
- Working with data locally (via DBMS)
- Formats: .par (default), CSV, XSAMS, HDF-5, JSON, “schema-free”
- Several layers of functionality (high, medium, low)
- Possibility to extend functionality by user's own routines
- Embedded documentation (getHelp)
- Fully compatible with HITRANonline database schema
Codes included (fortran)

 - Included information about 51 molecules
 - 70-3000K temperature range

- **PcqSDHC** line profile: Ngo et al. JQSRT 129 (2013) 89–100.
 - a.k.a. Hartmann-Tran profile, HTP
 - Can be reduced to VP, RP, qSDVP, qSDRP
HITRANonline API Architecture

API BACKENDS

- Python
- Matlab
- C/C++
- ...

API FRONTEND

- Django web frontend ("HITRANonline")
- API FRONTEND (LANGUAGE OF REQUEST)
- DATABASE ABSTRACTION

WEB - PROTOCOL (HTTP, ...)

- MySQL
- NoSQL
- ...

WEB
API architecture summary

• Frontend: web service based on some formal “language”
 - E.g. VAMDC query:

• Backend: local library of Python functions
LOCAL DATABASE operations:
→ partitionSum(...)
→ absorptionCoef(...)
→ transmittanceFunc(...)
→ calcProfile(...)
→ getColumn (...)
→ describe (...)
→ etc ...
API functionality: level 0

- Just one type of function: fetch(…)
- This function queries HITRANonline system to get a desired piece of data and put it to the local storage (folder)
- “RequestOptions”:
 - Molecule number?
 - Isotopologue number?
 - Wavenumber range
 - Intensity cutoff (!)
 - Desired line parameters etc.
API functionality: level 1

- API functions are expressed in physical terms:
 - `partitionSum(...M,I, temp...)`
 - `calcProfile(ProfileType,ProfileParameters)`
 - ProfileType: HT, Voigt, Lorentz, Gaussian, Galatry ...
 - `absorptionCoefficient(... spectral parameters ...)`
 - Include: environment dependence (temperature, pressure, path length), line shifts, mixtures...
 - different types of spectra (absorption coefficient, absorption spectra, transmittance, radiance)
 - `getEnergyLevels(LineList)`
 - `sortByEnergy(Options)`
 - `sortByBand(Options)` etc...
API functionality: level 2

- Lower-level: API functions are expressed in terms of database tables
- Approach similar to SQL: line list is a table of columns (nu, S, A, etc...)
- + queries are much more expressive
- – queries are more complex
- Basic functions: select(...), getColumn(...), dropTable(...), sort(...), group(...)
- Full documentation and tutorials on API will be available on hitranazure.cloudapp.net or by using the function getHelp()
Typical function/subroutine

`select(TableName, DestinationTableName, ParameterNames, Conditions)`

`TableName` = source table

`DestinationTableName` = table or stdout

`ParameterNames` = list of required parameters:

 e.g. (`'M','I','nu','S'`)

`Conditions` = structure containing all restrictions on parameters:

 (`'BETWEEN' , 'nu' , 99.5 , 100) => 99.5 <= nu <= 100

 ('AND',('IN','I',('SET',[1,2,3])),('<','nu',50)) => I in {1,2,3} and nu<50

`Conditions` = **any logical expression** containing the following operations:

{ 'AND', 'OR', 'NOT', 'RANGE', 'IN', '<', '>', '<=', '>=', '==', '!=', 'LIKE', 'STR', '+', '-', '*', '/', 'MATCH', 'SEARCH', 'FINDALL' }
API live demonstration
(IPython notebook)
Plans

- High-speed computation of cross-sections
- More data formats (XML, JSON, netCDF …)
- More profiles (soft collisions, line mixing)
- Verify with FASCODE, Kelly Chance's code (HIT-CROSS), HITRAN-on-the-WEB
- Add unit conversion
- Release: end of 2014
Thank you for your attention!