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Formation of Molecules

Wide temperature range
~5-4000 K

Wide density range
n~50-10%“cm-3

Wide radiative flux range
G~ 0-10° Gy,

Wide range of chemical processes

One-body, two-body and three-body gas phase processes
Surface reactions on ices

Bulk reactions on ices

Gas-solid interaction

Sometimes difficult to study relevant processes in the laboratory or
theoretically

Wide range of applications - the early universe to star formation to
late staaes of stellar evolution (AGBRB stars PNe Sne) to exobplanet



One-body reactions

Photodissociation/photoionisation:
B = B.exp(-bA,)

where b is a constant (~ 1- 3) and differs for different
molecules, B, is the unshielded rate in the ISM.

Details depend on wavelength dependence of photo cross-
sections, wavelength dependence of the incident UV flux and
dust grain properties.

Cosmic-ray ionisation of H, and He

Details sensitive to (low energy) CR energy spectrum and flux



Two-body reactions

Ion-neutral reactions

Neutral-neutral reactions

Ion-electron dissociative recombination
(molecular ions)

Ion-electron radiative recombination
(atomic ions)

Mutual Neutralisation (cation-anion)

Radiative association

Three-body reactions (only if density is very large, > 10 cm3)



JAolecular Emission in PPDs

* A good physical model - stellar properties, mass accretion rate,
dust properties, stellar and interstellar UV, stellar Lyman alpha
radiation, CR, X-ray fluxes, geometry, irradiation from a nearby
O-type star

* A good chemical model - reaction rates including high T and 3
body rates, gas-grain interchange, surface chemistry, .. (UMIST
Database for Astrochemistry www.udfa.net)

* A good radiative transfer model - UV photons (input radiation),
IR and (sub)millimeter photons (output radiation), collisional &
radiative rate coefficients,..

Chemistry in PPDs
Walsh, Millar & Nomura 2010, Apj, 722, 1607

Heinzeller, Nomura, Walsh & Millar, 2011, ApJ, 731, 115

Walsh, Nomura, Millar & Aikawa 2012, ApJ, 747, 114
Large gradients in physical parameters glve r|se to small scale
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Protoplanetary Disks
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Fig. from Mumma & Charnley, 2011, ARAA, 49,
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Gas-phase Garrod et al. 2008; Laas et al. 2011
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Molecular Distributions
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Vertical column densities of gas-phase and solid-state species.
Individual species have their own ‘snow-lines’ depending on their
binding energy



COMs Models - Vertical Profiles at 305 AU
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The effect of uncertainty in rate
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Kinetic Database for Astrochemistry (KIDA)

Wakelam et al. 2012 ApJS 199 21

____coefficients

- Between databases
(KIDA, OSU, UDFA)

- Intrinsic within
databases. Dotted lines
show 2-sigma
uncertainties in
abundances

- Important to identify key
reactions for further
study



Discussion Points
How do we advance the subject?

Gas-phase kinetics
lon-neutral - well studied in lab, well described theoretically
Neutral-neutral - well studied in lab (but not at low T), well
described theoretically, with some surprises and some difficulties
Recombination - of complex ions with electrons and anions
Role of top-down chemistry, e.g. driven by destruction of PAHs
Photodissociation/photoionisation

Grain surface processes
Binding energies, mobilities, reaction vs. diffusion - some
aspects well  studied in lab, but many important exceptions
Reaction processes and rates - few systems studied
Non-thermal desorption - few systems studied (mostly photo-
desorption)

Issues
No agreed definition of ‘IS’ or water ice
Exponential dependence of surface processes on T,
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