

Complex (Organic) Molecules in the ALMA and SKA era: data needs

Serena Viti

Department of Physics and Astronomy University College London, UK

Some COMs falling into the ALMA (84-950Ghz) and (up to 14 GHz) frequency ranges

Glycolaldehyde	CH ₂ OHCHO	SgrB2, YSOs
Acetic acid	CH₃COOH	SgrB2, YSOs
Methyl formate	HCOOCH ₃	SgrB2, YSOs, CC
Formamide	CH₃NO	SgrB2, YSOs
Amino acetonitrile	H ₂ NCH ₂ CN	SgrB2
iso-Propyl Cyanide	C ₄ H ₇ N	SgrB2
Acetone	(CH ₃) ₂ CO	SgrB2, Orion KL
Acetaldehyde	CH₃CHO	SgrB2, evolved stars
Ethyl Formate	C ₂ H ₅ OCHO	SgrB2, Orion KL
Methoxy	CH ₃ O	CC
Triacarbon monoxide	C ₃ O	CC?
cyanamide	NH ₂ CN	SgrB2, Extragal
Dymethyl ether	CH ₃ OCH ₃	Orion
Propanal	CH ₃ CH ₂ CHO	SgrB2
Propene	CH ₃ CHCH ₂	CC
Glycolic acid	HOCH ₂ COOH	SgrB2
Ethyl alcohol	CH ₃ CH ₂ OH	SgrB2
Formic acid	НСООН	SgrB2, CC, YSO
Hydroxylamine	NH ₂ OH	not yet detected
glycine	H ₂ NCH ₂ COOH	not yet detected
ketenimine	CH₂CNH	SgrB2

YSO: young stellar objects

CC: cold core

IMPORTANCE OF COMS

- Their detection is a confirmation of the high density cores where stars form
- COMs are now known to be present in cold gas in pre-stellar cores e.g. propylene (Marcelino et al. 2007)
- Some believe that formation of aminoacids may have occurred in the ISM and comets (e.g.

Glavin et al. 2006; Elsila et al. 2009)

Intensity of the line → Column density of the transition – **assuming LTE and temperature**

However, we are often not in LTE environments and/or we do not know the temperature of the gas → need collisional coefficients to solve the radiative tranfer equations and obtain best gas density and temperature (e.g. with RADEX)

BUT:

- 1. For none of the COMs listed a full set of collisional coefficients is available, apart from methyl formate and only within a certain range of temperatures (Faure et al. 2014)
- 2. Collisional coefficients are important for some COMs with transitions with small dipole strengths (Beltran et al. 2009)
- 3. For SKA the need for collisional coefficients is even more important as it has been shown that a lower frequencies NLTE effects are more important (Faure et al. 2014, apj)

What about rest frequencies?

E.g. Massive star forming regions: the big problem of line confusion in the submm

Crockett et al. (2010), Orion KL observed with HIFI on Herschel

If one zooms in.....

More is less.....

line confusion due to:

- Richness of the spectrum
- Blending (due to large linewidths)
- Uncertainties in the lab rest frequencies as well as in the observations

This leads to only tentative detections in most cases (e.g. glycolaldehyde @ 220.4 GHz may be acetone instead!)

In solar-type stars, similar problems because linewidth is very small (\sim 0.1 MHz)

Note that the A and E forms for CH_3OH are taken from the CASSIS database. The line labeled a is in absorption.

Vastel et al. 2014

Catalogues disagree in some rest frequencies!

Some examples:

- Glycolaldehyde: some low J transitions within Band 3 and 4 of ALMA disagreement up to 0.3 MHz.
- Acetic Acid: only one source of frequencies (LOVAS) with errors >
 0.1 MHz
- → We do not have a systematic database of transitions for which rest frequencies are needed.

Partition functions: how accurate are these for COMs?

Examples:

- For Acetic Acid SPLATALOGUE does not report any partition function (now estimated/calculated by several groups (eg Calcutt et al. 2015))
- For methyl formate: SPLATALOGUE/JPL has two contributions for the partition functions which seem to differ by over an order of magnitude at high (300K) temperatures.

How do the non-experts choose?